
From Data to Pattern Structures: Near Set Approach

Marcin Wolski1 and Anna Gomolińska2
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Abstract. Pattern structures were introduced by Ganter and Kuznetsov in the
framework of formal concept analysis (FCA). Usually these structures are re-
garded as a means of direct analysis of objects with complex descriptions. In
FCA a pattern structure is given (in some sense a priori to the analysis) rather than
built (a posteriori) from data. Of course, each data table/formal context induces
a pattern structure; but it brings no new bits of information (and in that sense is
trivial). In the present paper we would like to discuss two methods of generating
(non-trivial) pattern structures from (simple) data. However, our study is done in
the conceptual framework of rough set and near set theories (instead of FCA).
The main reason is that both methods are based on the near set methodology.

1 Introduction

Pattern structures were originally introduced by Ganter and Kuznetsov [6] in the frame-
work of formal concept analysis (FCA) [5, 24]. The initial structure of FCA is a formal
context (G,M, I), which consists of a set of objects G, a set of properties M , and a re-
lation I ⊆ G ×M , where (g,m) ∈ I reads as the object g has the property m. A de-
scription of an object g is then given by the set of its properties. Pattern structures were
introduced as a tool allowing one to directly analyse objects whose descriptions are
given in some complex form, e.g., in the form of graphs, rather than in terms of simple
properties. Thus, in this new frame, a given object g may be associated with some arbi-
trary structure s (instead of a set of properties) serving as a representation of (informa-
tion about) g. However, it is additionally assumed that the setD of these representations
has to form a meet semi-lattice. The main rationale is that the lattice meet operation u
would express the similarity (or nearness) between descriptions/representations. This
enriched formal context, called a pattern structure, has a form of (G, (D,u), δ), where
δ : G → D maps objects to descriptions (sometimes also called patterns). In FCA a
pattern structure is given rather than built from (simple) data. Of course, every formal
context (G,M, I) is a pattern structure (G, (PM,∩), I), where PM is the powerset of
M and δ assigns to each object g its description {m ∈ M : (g,m) ∈ I} ⊆ M . But
(G, (PM,∩), I) brings no new bit of information when compared to (G,M, I), and in
that sense is trivial. The main goal of our paper is to define methods of building non-
trivial pattern structures from simple data. However, our study is done in the conceptual
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framework of rough set and near set theories (instead of FCA). The main reason is that
both methods are based on (inspired by) the near set methodology.

Near set theory was introduced by Peters in [11, 12] as the result of collaborative
work with Pawlak, Skowron, and Stepaniuk (see [13]). Originally, it was (mathemati-
cally) articulated within the conceptual framework of rough set theory, introduced by
Pawlak in the early 1980s [18] (roughly in the very same time when Wille introduced
FCA [23]). Therefore near sets share a lot of bits of conceptualisation together with
rough sets. Another natural context of construing near sets is the spatial/topological
nearness of sets. This topic may be traced back to the address by Riesz at the Inter-
national Congress of Mathematicians in Rome in 1908 [22]. The most fundamental
concepts were introduced by Čech in the years 1936-1939 (published in [2]), and Efre-
movič in 1933 (published in [3]). The study of formal connections between spatially
near sets and descriptively near sets may be found in papers by Peters and Naimpally
[9, 14]. In the framework of near sets we deal with objects via their descriptions (thus,
in an indirect way) and two sets are near, provided that they share the same descrip-
tion (rather than the same object). However, the main emphasis is put upon descriptive
nearness, rather than descriptions. In the present paper we would like to shift this em-
phasis along the lines of FCA and discuss (patterns of) descriptions and their nearness
(similarity) given by means of pattern structures. To this end we are going to apply
our previous results about modal relationships between rough set theory and near set
theory [25], and explicitly define pattern structures within the rough and near theoretic
conceptual framework. We offer two different methods of generating pattern structures;
the first one is designed for symbolic attribute values, the second one is suitable for nu-
merical values. Interestingly, we regard symbolic and numerical values as semantically
different, and therefore we define two different methods of their processing. Pattern
structures built in these ways add a lot of flexibility to the original theories; signifi-
cantly, they allow one to analyse objects, set approximations, and nearness of sets at
different levels of resolution. Thus, to some extent the system may be adapted to the
context of application or environment.

2 Mathematics of Data

When we think about data in the context of computer science, we usually bear in mind a
data table. This object may be mathematically defined/described in a number of differ-
ent ways, e.g., [5, 15–18, 21, 24]. In this paper we start with a definition taken from
rough set theory [16, 17, 19, 18] and stick to this conceptualisation through out the
whole paper. Thus, we are going to discuss both formal concept analysis (FCA) and
near set theory within the rough set framing (notation); specially, we change the orig-
inal FCA notation used in Introduction. Additionally, we restrict our attention only to
the specific fragments/parts of these theories which are relevant to our research; so, we
do not offer a proper introduction to them. Yet, we shall try to make the paper self-
contained.

Definition 1 (Information System [15, 18]). A quadruple I = (U,Att, V al, f) is
called an information system, where:
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– U is a nonempty finite set of objects,
– Att is a nonempty finite set of attributes,
– V al =

⋃
A∈Att V alA, where V alA is the value–domain of the attribute A,

– f : U × Att → V al is an information function, such that for all A ∈ Att and
x ∈ U it holds that f(x,A) ∈ V alA.

If f is a partial function, then the information system I is called incomplete. If the
codomain of f is the powerset of V al, then the system is called multivalued,approximate,
or nondeterministic.

The difference between multivalued, approximate, and nondeterministic systems is se-
mantic. The first interpretation is the object x has all values from VA for the attribute
A (multivalued systems), the second reads as the object x has a single value from the
set VA for the attribute A (approximate systems), and finally for the object x and the
attribute A the set VA provides some possible values (nondeterministic systems) [15].

In what follows we shall confine our attention to the complete information systems.
Every (sub)set of attributes A ⊆ Att induces an approximation space, which is a pair
(U,EA), where the relation EA is defined by

EA = {(x, y) : f(x,A) = f(y,A) for all A ∈ A}.

Definition 2 (Lower and Upper Approximations [20]). A pair (U,E), where E is an
equivalence relation, is called an approximation space. Define:

LowE(X) = {x ∈ U : [x]E ⊆ X},

UppE(X) = {x ∈ U : [x]E ∩X 6= ∅}.
LowE(X) is called the lower approximation of X , whereas UppE(X) is called the
upper approximation of X .

In order to simplify the notation, we shall writeLowA(X) andUppA(X) forLowEA(X)
and UppEA(X), respectively. In the case whenA = Att, we shall leave E without any
subscript.

Definition 3 (Formal Context [5, 24]). A formal context is a triple (U,Att,R), where
U is a set of objects, Att a set of properties and R ⊆ U × Att is a binary relation,
where (x,A) ∈ R reads as the object x has the property A.

There is some technical problem when dealing with complete information systems and
formal contexts; namely, the correct formalisation of properties (predicates) as attributes
(the other way is easy). Let us consider chess and a predicate King. A given object/piece
may or may not be a King. Since the information function is defined for all pieces, we
could take no and yes as the (only) values of King regarded as an attribute. However,
the attribute King is substantially different than, e.g., colour restricted to two values
black and white. Starting from colour, one can derive two properties, e.g., colour =
white and colour = black. Usually, we do not want to have two King-based properties
(King = yes, King = no). In this settings, it seems that King should be construed as
a single valued attribute (with some dummy value), but then the function f would need
to be partial in order to cover objects such as, e.g., bishops. In this very sense, formal
contexts are more general than complete information systems.
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Definition 4 (Derivation Operators [5, 24]). For a formal context C = (U,Att,R),
we define:

R′(X) = {A ∈ Att : (x,A) ∈ R, for all x ∈ X}

R′(A) = {x ∈ U : (x,A) ∈ R, for all A ∈ A},

for all X ⊆ U and A ⊆ Att.

We have just defined the classical part of FCA. In order to deal with objects having
complex descriptions Ganter and Kuznetsov introduced pattern structures.

Definition 5 (Pattern Structure [6]). A pattern structure is a triple (U, (D,u), δ),
where U is a set of objects, (D,u) is a complete meet-semilattice of descriptions and
δ : U → D maps an object to a description.

The derivation operators for a pattern structure are defined as follows:

X2 =
l

x∈X
δ(x) for all X ⊆ U,

d2 = {x ∈ U : d v δ(x)} for all d ∈ D.

Given a set of objects X , the operator 2 returns the description X2 which is common
to all objects in X . And given a description d, 2 returns the set d2 of all objects whose
description subsumes d. The partial orderv onD is defined as usual: c v d iff cud = c.

As noted in the introduction, each formal context C = (U,Att,R) induces a pattern
structure (U, (PAtt,∩), δ), where

δ(x) = {A ∈ Att : (x,A) ∈ R}.

For a, b ∈ D, the pattern implication a⇒ b holds if a2 v b2.
As already said, the concept of spatial nearness may be traced back to 1908. An

introduction to spatially near sets is given by Naimpally [8]. The role of nearness in
topology, proximity spaces, and uniform spaces is discussed in great detail in [14].

Definition 6 (Topology). Let U be a set. A topology in U is family τ of subsets such
that:

– each union of members of τ is a member of τ ;
– each finite intersection of members of τ is also a member of τ ;
– U and ∅ are members of τ .

If τ is closed under arbitrary intersections, then τ is called an Alexandrov topology.
A couple (U, τ) is called a topological space; members of τ are called open sets. A set
X ⊆ U is closed if U \X ∈ τ .

As usual, the smallest closed set containing X is denoted by Cl(X), and the largest
open set contained in X is denoted by Int(X). By the standard abuse of notation the
corresponding set operators are denoted by the same names: Cl : PU → PU sending
X to Cl(X) is called a closure, whereas an operator Int : PU → PU sending X to
Int(X) is called an interior.
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Definition 7 (Spatial Nearness). A spatial nearness relation ρ (called a discrete prox-
imity) induced by (U, τ) is defined by

ρ = {(X,Y ) ∈ PU × PU : Cl(X) ∩ Cl(Y ) 6= ∅} .

A pair (U, ρ) is called a proximity space.

If (X,Y ) ∈ ρ, then we shall also write X ρ Y . The discrete proximity defined above is
only one among many proximity relations discussed in topology. Actually, the theory
of nearness spaces [1, 4] is very rich and we discuss here a very small fragment, which
is relevant to our study.

As an example, let us consider an approximation space (U,E). The quotient space
(a family of all equivalence classes of E) is denoted by U/E. If for X ⊆ U it holds that
X =

⋃
Y , for some Y ⊆ U/E, then X is called definable in (U,E). The following

proposition belongs to the folklore of rough sets.

Proposition 1. Let be given an approximation space (U,E) and the collection σ of all
definable sets. Then (U, σ) is an Alexandrov topological space, whose closure operator
is an upper approximation operator. Therefore, for the induced proximity space (U, ρ),
it holds that:

ρ = {(X,Y ) : X,Y ⊆ U & X ∩ Y 6= ∅}.

The next step in unpacking the richness of the concept of nearness relation ρ is the
introduction of nearness collections ξ:

ξ(X) = {Y ∈ U : X ρ Y } .

These collections lead to very rich mathematical structures: nearness spaces [4] and the
category Near [1].

As already said, we restrict our conceptual framework to rough set theory, therefore
we introduce near set theoretic structures in an altered form.

Definition 8 (Perceptual System). A perceptual system is a pair (U,F), where U is a
non-empty finite set of perceptual objects and F is a finite sequence of probe functions
φi : U → V ali.

The probe functions describe physical features of objects and usually are regarded as
sensors. Originally each function φi was defined by Peters [11, 12] as the real valued
function. However, we allow probe functions to take any values. Thus, given an in-
formation system (U,Att, V al, f), if we order the set of attributes Att, then we may
build a perceptual system (U,F), where φi(x) = f(x,Ai). Because F is a sequence,
it allows us to assign to each object x ∈ U a feature vector Φ(x) over F, i.e., a vector
(φ1(x), φ2(x), . . . , φn(x)) of feature values that describe the object x. For a setX ⊆ U
let us define:

Q(X) = {Φ(x) : x ∈ X} .

Definition 9 (Descriptive Nearness). A set X is descriptively near to Y in (U,F),
denoted by X ρΦ Y , iff Q(X) ∩Q(Y ) 6= ∅.
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It is worth noting that descriptively near sets can be spatially far sets. However, as noted
in [25], we may convert descriptive nearness into its spatial counterpart. Firstly, each
perceptual system (U,F) gives rise to an approximation space (U,E), where (x, y) ∈ E
iff {x} ρΦ {y}. Thus, secondly, we also have its Alexandrov topological space (U, σ)
and the discrete proximity ρσ .

Proposition 2 ([25]). A setX is descriptively near to Y in (U,F) iffX is spatially near
to Y in the corresponding topological space (U, σ).

Let us now consider a nearness collection of X defined by (U,F):

ξσ(X) = {Y ∈ U : X ρσ Y } .

It is worthy to emphasise the following similarity between upper approximations and
nearness collections.

Proposition 3 ([25]). For a perceptual system (U,F) and its approximation space (U,E)
it holds that:

X = {x : [x]E ∩X 6= ∅ } =
⋃
{[x]E : [x]E ∩X 6= ∅ }, (1)

ξσ({x}) = {X ⊆ U : [x]E ∩X 6= ∅ }. (2)

This proposition establishes a connection between rough set and near set perspectives
on points, sets, and a granulation of U (in terms of equivalence classes). In the rough
set framework we examine how points are related to a given set X via their minimal
neighbourhoods. More precisely, we collect equivalence classes having nonempty in-
tersection with a given set. In the near set approach we examine how sets are related to
a given point via the same granulation. That is, we collect sets having nonempty inter-
section with a given equivalence class. This observation allows us to define new pattern
structures induced by information/perceptual systems.

3 Nearness Pattern Structures

In the present section we introduce pattern structures induced by perceptual systems
(derived from complete information systems). The main idea is to (somehow) employ
Proposition 3. Vaguely speaking, we are going to take an object x, and for every attribute
collect all “sets” (extensions of attribute values) having nonempty intersection with
some specific equivalence class generated by x. So, we are going to define a kind of
nearness collections, which can be informally described as:

ξi({x}) = {extension of a : a ∈ V alAi
& (extension of a) ∩ [x]Ei

6= ∅},

where Ei is an equivalence relation, which corresponds to ξi.
Going into details, as earlier, we start with an information system (U,Att, V al, f)

and convert it into a perceptual system (U,F): φi(x) = f(x,Ai). The set Q(U) con-
sists of all feature vectors/descriptions induced by our perceptual system. Following
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Ganter and Kuznetsov [6], in order to convert Q(U) into a pattern structure, we need
to provide this set with a lattice meet operation u. Let us recall that in FCA there is a
special tool, called a scale or scaling, which allows one to convert an information sys-
tem (U,Att, V al, f) into a formal context. Formally, a scale S for an attribute A ∈ Att
is a formal context S = (V alA, V alA, RA) having V alA as both the set of objects and
the set of attributes. Since each attribute may have its own scale, we actually work with
a family of scales: S = {(V alA, V alA, RA) : A ∈ Att}. It is also assumed that for
every A and its scale S ∈ S the identity relation {(v, v) : v ∈ V alA} is included in
RA. After scaling each pair attribute-value (A, v) is regarded as a separate attribute of
the new context CSI = (U, {(A, v)}A∈Att, v∈V alA , R), where R is defined by

R = {(x, (A, v)) : v ∈ fs(x,A)},

fs(x,A) = {vi ∈ V alA : f(x,A) = v & (v, vi) ∈ RA}.

It is easy to observe that every information system I = (U,Att, V al, f) may also
be converted – by the application of a family of scales S = {(V alA, V alA, RA) :
A ∈ Att} – into a multivalued, approximate, or nondeterministic information system
IS = (U,Att, V al, fs). A nominal scale S for A is the identity relation over V alA.
Let us now consider a multivalued information system IS = (U,Att, V al, fs) induced
by I and a family S of nominal scales only. Then – instead of Q(U) – we may take
QS(U) derived from IS . It is easy to observe that QS(U) consists of feature vectors
of the form Φ(x) = ({φ1(x)}, {φ2(x)}, . . . , {φn(x)}), for x ∈ U . Thus, QS(U) may
be provided with natural lattice operations defined in terms of the standard set-theoretic
meet and join operations:

Φ(x) u Φ(y) = ({φ1(x)} ∩ {φ1(y)}, {φ2(x)} ∩ {φ2(y)}, . . . , {φn(x)} ∩ {φn(y)})

Φ(x) t Φ(y) = ({φ1(x)} ∪ {φ1(y)}, {φ2(x)} ∪ {φ2(y)}, . . . , {φn(x)} ∪ {φn(y)})

The (complete) lattice generated by QS(U) will be denoted by LF = (Q,u,t).
What we still lack to obtain a pattern structure is the map δ : U → Q assigning

to each object x ∈ U some (non-trivial) description/pattern. As already said, following
Proposition 3, we would like to somehow employ the concept of nearness collections.
The plan of building δ is as follows. Firstly, with each probe function φi we associate
an equivalence relation EAtt\{Ai}, where Att \ {Ai} denotes set-theoretic difference
of Att and {Ai}, determined by the corresponding attribute Ai. In order to simplify
the notation let us denote it by Ei. Secondly, we take an object x, its equivalence class
[x]Ei

, and then for the attributeAi and the object xwe collect all these values from VAi
,

which have nonempty intersection (by means of their extensions) with the class [x]Ei .

ξi({x}) = {a ∈ V alAi
: |a| ∩ [x]Ei

6= ∅},

|a| = {x ∈ U : φi(x) = a}, for a ∈ V alAi
,

Ei = {(x, y) : f(x,Aj) = f(y,Aj) for all Aj ∈ A such that j 6= i}.

Of course, φi(x) (that is, f(x,Ai)) must be included in the set ξi({x}); or, in terms of
the multivalued system obtained by scaling process, fs(x,Ai) ⊆ ξi({x}). It means that
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objects must not have ∅ as the value in their descriptions. Before we further formalise
these ideas, let us clarify them by discussion of a simple information system of fruits
(which is a modified version of data table discussed by Kuznetsov3).

U = {apple, grapefruit, kiwi, plum,mango},
Att = {colour, firm, smooth, form}
F = (colour, firm, smooth, form)

fruit colour firm smooth form
apple yellow no yes round

grapefruit yellow no no round

kiwi green no no oval

plum blue no yes oval

mango green no yes oval

(a)

fruit colour firm smooth form
apple {yellow} {no} {yes} {round}

grapefruit {yellow} {no} {no} {round}
kiwi {green} {no} {no} {oval}
plum {blue} {no} {yes} {oval}
mango {green} {no} {yes} {oval}

(b)

Fig. 1. (a) represents an information system of fruits I; (b) represents the result of nominal scaling

As depicted in Fig. 1 (a), a database of fruits I = (U,Att, V al, f) is given. Firstly, by
nominal scales S, we convert it into a multivalued information system IS (Fig. 1 (b)).
Then we regard IS as the perceptual system and compute QS(U). As easily noted, it
includes, e.g.,

Φ(kiwi) = ({green}, {no}, {no}, {oval}),

Φ(mango) = ({green}, {no}, {yes}, {oval}).

The next step is to take QS(U) as the generator of LF = (Q,u,t); thus, Q in-
cludes, e.g.,

Φ(kiwi) u Φ(mango) = ({green}, {no}, ∅, {oval}),

Φ(kiwi) t Φ(mango) = ({green}, {no}, {no, yes}, {oval}),

> = ({green, yellow, blue}, {no, yes}, {no, yes}, {oval, round})

⊥ = (∅, {no}, ∅, ∅),

where > and ⊥ denote the top and bottom of LF, respectively. Now we can define the
function δI : U → Q.

δI(x) = (ξ1({x}), ξ2({x}), . . . , ξn({x})).

Let us compute δ for, e.g.,mango. For the attribute colour, we obtain [mango]E1
=

{mango, plum}; since the extension of blue, which is {plum}, has nonempty inter-
section with [mango]E1 , we would like to add blue to the the set colour(mango);
that is, ξ1({mango}) = {blue, yellow}. For the attribute firm we have [mango]E2 =

3 The lecture presented at 11th International Conference, ICFCA 2013, Dresden, Germany, May
21-24, 2013.
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{mango}. Only no ∈ V alfirm has nonempty intersection (of its extension) with the
class [mango]E2

, therefore ξ2({mango}) = {no} . Next, for the attribute smooth we
obtain [mango]E3

= {mango, kiwi}. Thus ξ3({mango}) = {yes, no}. Finally, for
form, we have [mango]E4

= {mango} and ξ4({mango}) = {oval}. In this way we
have obtained:

δI(mango) = ({yellow, blue}, {no}, {yes, no}, {oval}).

Interestingly, the pattern structure (U, (Q,u), δI) may be seen as a nondeterministic
transformation of I. Just define (U,Fδ), where φδi (x) = ξi(x) for every φδi ∈ Fδ .
Continuing our example we may convert the fruit data table as depicted by Fig. 2.

fruit colour firm smooth form
apple {yellow} {no} {yes, no} {round}

grapefruit {yellow} {no} {yes, no} {round}
kiwi {green} {no} {yes, no} {oval}
plum {blue, green} {no} {yes} {oval}
mango {blue, green} {no} {yes, no} {oval}

Fig. 2. A nondeterministic version of I via the pattern structure (U, (Q,u), δI)

As said earlier, scales allow us to convert information systems into multivalued in-
formation systems. But (U,Fδ) obtained from our fruit data set cannot be derived from
I by any scale. E.g., because green is related to blue, for any scale S we must obtain
{green, blue} for kiwi, but we have only {green}. Interestingly, it seems that (U,Fδ)
should be interpreted as an approximate information system, rather than as a multi-
valued information system (as in the case of systems obtained by scaling). We would
like to regard this approximate information system as a flexible version of the original
one. However, the relevance of this approach to data analysis yet need to be tested.
In contrast to the standard information systems, approximate information systems are
equipped with three important relationships between the elements of the universe.

Definition 10 (Informational Relations [15, 18]). Let (U,Att, V al, f) be a multival-
ued information system; then one can define:

informational indiscerniblity: x Ind y iff f(x,A) = f(y,A),
informational connectivity (similarity): x Sim y iff f(x,A) ∩ f(y,A) 6= ∅,
informational inclusion: x Incl y iff f(x,A) ⊆ f(y,A),

for all A ∈ Att and x, y ∈ U .

Having three relations at disposal adds a lot of flexibility to data analysis. Since Ind
is an equivalence relation, we can easily define the lower and upper approximation
operators induced Ind. However, we can also generalise E to any reflexive relation
P ⊆ U × U (e.g. Sim or Incl) and obtain generalised approximation operators. Let
[x]P = {y ∈ U : (x, y) ∈ P} and define:

LowP (X) = {x ∈ U : [x]P ⊆ X},
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UppP (X) = {x ∈ U : [x]P ∩X 6= ∅}.
Since E ⊆ Ind ⊆ Incl ⊆ Sim, multivalued information systems allow us to introduce
zooming. Let I be our fruit data table. Then the approximation space (U,EI) induced
by I gives the discrete topological space. So, at the highest resolution apple is viewed
as UppEI ({apple}) = {apple}. At the next level we obtain UppInd({apple}) =
{apple, grapefruit}. Further zooming out does not change anything. Let us now con-
sider kiwi: UppEI ({kiwi}) = {kiwi}; UppInd({kiwi}) = {kiwi}. Let us zoom out
once again: UppIncl({kiwi}) = {kiwi,mango}. And finally: UppIncl({kiwi}) =
{kiwi, plum,mango}.

Apart from set approximations, another important task in rough set theory is to
compute decision rules. In the case of approximate information systems obtained by
pattern structures, we replace standard decision rules by pattern implications. If D is a
decision (binary) attribute, then a pattern implication P → D would hold, if P2 ⊆ |D|.
Our hypothesis (to be tested in the future) is that pattern implications will be more stable
during the evolution/extension (by new objects) of the original information system.

So far we have considered only symbolic values. Usually, numeric values are pre-
processed and then represented in the form which is further processed in the same way
as symbolic values. However, our idea is to regard them as semantically different, and
to define a different form of pattern structures for numeric values. For example, let us
consider an attribute price. What would ξprice(apple) = {2.0, 2.5, 3.1} mean?

In order to answer this question let us come back to the original concept of percep-
tual system (U,F), where all probe functions are real valued.

Definition 11 (Perceptual Tolerance Relation [11, 12]). Let 〈U,F〉 be a perceptual
system (where φi : U → R, for every φi ∈ F) and let ε ∈ R. For every B ⊆ F the
perceptual tolerance relation TB,ε is defined as follows:

TB,ε = {(x, y) ∈ U × U : (|φi(x)− φi(y)| ≤ ε) for all φi ∈ B}.

For notational convenience, when B = F , this relation is denoted by Tε.
This definition suggests us a new transformation of the original system. To make the

paper notationally consistent, let us assume that we start with a complete information
system I = (U,Att, V al, f), such that V alA ⊆ R, for every A ∈ Att. Now we define
a new information system Iε = (U,Att, V al, fε), where

fε(x,A) = [f(x,A)− ε, f(x,A) + ε].

Thus, fε sends an object x and an attribute A to an interval of real numbers. As in the
previous case of symbolic values, firstly we regard Iε as the perceptual system (U,Fε)
(i.e. Att is a sequence and φiε = fε(x,Ai)), secondly we take the set Qε(U) of all
feature vectors over Iε, and finally we build a complete meet-semi lattice.

The natural pattern structure for real intervals suggested by Kuznetsov – e.g., [7] –
is defined as (I,u), where I = {[a, b] : a, b ∈ R}, and

[a1, b1] u [a2, b2] = [min(a1, a2),max(b1, b2)].

Thus, let us generate a complete meet-semi lattice Lε = (Qε,u) from Qε(U) and u
(by abuse of notation we use the same symbol for both operators). Of course, the full
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definition is as follows:

Φε(x) u Φε(y) = (φ1ε(x) u φ1ε(y), φ2ε(x) u φ2ε(y), . . . , φnε (x) u φnε (y)).

Then, for any real valued attribute Ai, we would have:

ξiε({x}) = uy∈[x]Ei
fε(y,Ai) ∈ I.

However, the equivalence relation Ei seems to be too strong, therefore we would like
to replace it by the perceptual tolerance T iε :

T iε = {(x, y) ∈ U×U : |f(x,Aj)−f(y,Aj)| ≤ ε) for all Aj ∈ Att such that j 6= i}.

So, the final definition δε is:

δε(x) = (ξ1ε ({x}), ξ2ε ({x}), . . . , ξnε ({x})) ∈ Qε and ξiε({x}) = uy∈[x]
Ti
ε

fε(y,Ai) ∈ I.

In this way we obtain a perceptual pattern structure (U, (Qε,u), δε) induced by a per-
ceptual system (U,Fε) of (U,Att, V al, f), where V alA ⊆ R, for every A ∈ Att. The
elements of Qε are called perceptual patterns. Now we can translate the informational
relations into the realm of perceptual patterns:

[a1, b1] ∩ [a2, b2] = [max(a1, a2),min(b1, b2)].

Of course, any [a, b], such that a > b, denotes the empty interval [ ]. Two patterns P1

and P2 are indiscernible iff proji(P1) = proji(P2), for all i ≤ n, where proji(P )
denotes the standard ith projection of a given n-dimensional vector P . Two patterns P1

and P2 are similar iff proji(P1)∩ proji(P2) 6= [ ], for all i ≤ n.

Definition 12 (Structural Nearness of Sets). Let be given a complete information sys-
tem I = (U,Att, V al, f), such that V alA ⊆ R, for every A ∈ Att. Then two sets
X,Y ⊆ U are structurally near iff there exist x ∈ X and y ∈ Y , such that the patterns
δε(x) and δε(y) are similar.

In near set theory the main task is to find sets which are near to each other. We suggest
to test the idea of finding sets which are structurally near.

4 Conclusions

In the paper we adopted and adapted pattern structures [6] defined in the framework of
formal concept analysis [5, 23, 24] to the conceptual framing of rough set theory [15–
18, 20] and near set theory [11–13]. In contrast to FCA, the pattern structures introduced
in the paper were computed directly from data; they were regarded as a posteriori struc-
tures rather than a priori, as in the case of FCA.

Pattern structures allowed us to convert a given information system into an approx-
imate information system [15]. From a technical standpoint, this conversion leads to
coverings of value sets VA, for each attribute A, and can be compared to symbolic
value grouping introduced by Nguyen et al. [10]. However, we simply computed these
coverings, whereas the main objective of [10] was to find optimal partitions. Moreover,
our goal was to define flexible descriptions (patterns), whereas Nguyen et al. aimed at
decreasing the number of attribute values. The detailed study of relationships between
these two approaches would be a topic for another research.
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